中图分类号: O642 文献标识码: A 文献编号: 1005-1198 (2016) 04-0280-10 DOI: 10.16253/j.cnki.37-1226/tq.2016.06.005

研究论文

Si-B-C-N-H-CI 体系 CVD 气相产物 热力学数据的计算

任海涛^{1,2},刘家臣¹,郭安然¹

1天津大学先进陶瓷加工技术教育部重点实验室, 天津 300072

2西北工业大学超高温结构复合材料重点实验室,西安710072

摘要:本文采用基于量子力学的理论方法计算获得了 Si-B-C-N-H-Cl 体系 CVD 过程中所 有气相产物的热力学数据,包括分子在 298.15 K~2000 K 的标准摩尔热容,标准摩尔熵、标准 摩尔生成焓和标准摩尔生成吉布斯自由能等,为含 Si-B-C-N-H-Cl 元素的任意先驱体体系反应 热力学研究提供了基础数据。

关键词: 硅硼碳氮陶瓷; CVD; 热力学计算

连续纤维增韧非氧化物陶瓷基复合材料具有密度低、耐高温、优异力学、抗腐蚀和抗氧化性能, 在航空航天领域获得了广泛应用。含有硅 (Si)、硼 (B)、碳 (C)、氮 (N) 等化学元素的二元或多元 非氧化物陶瓷 (如 SiC、Si₃N₄、BN、Si-C-N 和 Si-B-C-N 等) 具有轻质、耐高温、抗热冲击、力学 性能高等优点,其中一些化合物还具有吸波透波功能,是结构功能一体化陶瓷基复合材料的优良基 体材料^[1-3]。

化学气相沉积 (Chemical Vapor Deposition, CVD) 是制备陶瓷基复合材料界面、基体和涂层组元的有效方法。利用 CVD 方法制备无机材料的反应过程中涉及到的化学反应十分复杂,理解和掌握这些反应的机理对于先驱体的选择、反应器的设计、工艺参数的优化以及材料的微观尺度设计都有极其重要的意义。Si-B-C-N-H-Cl 体系中涉及到大量的气相产物,其中绝大多数气相产物由于存在寿命短,活性高,实验难以测定,其热力学数据基本都为未知,仅通过传统实验方法研究其热力学特性目前还很困难。

西北工业大学苏克和教授课题组基于量子化学理论结合精确模型化学方法分别对丙烯热解制备

收稿日期: 2016-06-15 收到修改稿日期: 2016-06-18

基金项目: 国家自然科学基金 (50572089, 50642039)。

通讯作者: 任海涛 (1982 -), 男, 河北保定人, 博士后。E-mail: renht0929@163.com。

热解碳体系^[4,5]、MTS 热解制备碳化硅 (SiC) 体系^[6-8]、BCl₃-CH₄-H₂-Ar 制备碳化硼(B₄C)体系^[9,10] 以及 BCl₃-C₃H₆-H₂-Ar 制备碳化硼 (B₄C) 体系^[11,12]进行了研究。基于体系 Gibbs 自由能最小的方法 是最常用的热力学计算方法,而其研究基础是可靠的高温热力学数据。

本文利用量子化学结合统计热力学方法,计算获得 Si-B-C-N-H-Cl 体系中相关气相产物的热力 学数据,其中包括 Si-B 体系^[13]的 211 种、B-N 体系^[14]的 136 种、Si-N 体系^[15]的 155 种、Si-C-N 体系^[16]的 438 种。这些数据包括各气相产物的标准摩尔热容 C^{θ}_{p} 、标准摩尔熵 S^{θ}_{m} 、生成焓 $\Delta_{f}H_{m}^{\ \theta}$ 和 生成吉布斯自由能 $\Delta_{f}G_{m}^{\ \theta}$ 。可为含 Si、B、C、N、H、Cl 元素的任意先驱体体系 CVD 过程反应热力 学研究提供基础数据。选择 JANAF^[17]中可查到实验数据的 16 种气相产物为例说明。

1 气相产物热力学计算方法

本文采用标准统计热力学方法来计算不同温度下的热容和熵,考虑了平动配分函数、转动配分 函数、振动配分函数及电子配分函数对热容和熵的贡献。具体计算细节如下:

1.1 配分函数

平动配分函数: 当分子平动能级差很小时, 平动配分函数 qt 的表达式为:

$$q_{\rm t} = \left(\frac{2\pi m kT}{h^2}\right)^{3/2} V \tag{1}$$

式中, m 为分子的质量, V 为分子的体积, T 为温度, k 为玻尔兹曼常数, h 为普朗克常数。

根据阿伏伽德罗公式 $pV = nRT = N_A kT$ (其中 p 为气体压强, R 为气体常数, N_A 为阿伏伽德罗常数), 可知 $V = N_A kT/p$, 代入式 (1) 即得到:

$$q_{\rm t} = \left(\frac{2\pi nkT}{h^2}\right)^{3/2} \frac{N_{\rm A}kT}{p} \tag{2}$$

转动配分函数: 同样,当转动能级差很小时,分子的转动配分函数 *q*_r有解析式。对于直线型分子,其解析式为:

$$q_{\rm r} = \frac{8\pi^2 I K T}{\sigma h^2} \tag{3a}$$

对于非直线型分子则为:

$$q_{\rm r} = \frac{8\pi^2 (2\pi KT)^{3/2}}{\sigma h^3} (I_{\rm x} I_{\rm y} I_{\rm z})^{1/2}$$
(3b)

式中,I为转动惯量, σ 为对称数。

振动配分函数:因分子的振动能级差较大,振动激发遵循统计规律。分子的振动配分函数 *q*、也 分直线型和非直线型分子。取分子的振动基态 (零点振动能级)为能量零点,则直线型分子的配分函 数为:

$$q_{\nu} = \prod_{i=1}^{3n-5} \frac{1}{1 - \exp\left(-\frac{h\nu_i}{kT}\right)}$$
(4a)

对于非直线型分子则为:

$$q_{\nu} = \prod_{i=1}^{3n-6} \frac{1}{1 - \exp\left(-\frac{h\nu_i}{kT}\right)}$$
(4b)

式中, n 为分子所含原子数, (3n-5) 或 (3n-6) 为振动自由度或独立振动模式数 (因为n 原子分子 在三维空间运动的总自由度为 3n, 其中分子质心平动自由度为 3, 直线分子转动为 2, 非直线分子 转动为 3, 故 3n-5 或 3n-6 即为振动自由度数), v_i 为分子中第i 种振动模式的振动频率 (Hz)。

电子配分函数:电子激发能随分子的不同而不同。在 CVD/CVI 方法制备材料所通常采用的较高 温度下,电子激发是一个不容忽视的问题,必须在热力学数据计算中加以考虑。电子配分函数 *q*_e的 表达式如下:

$$q_{\rm e} = g_0 \exp\left(-\frac{\varepsilon_0}{kT}\right) + g_1 \exp\left(-\frac{\varepsilon_1}{kT}\right) + g_2 \exp\left(-\frac{\varepsilon_2}{kT}\right) + \dots$$
(5)

式中, g_i是第 *i* 个电子能态的量子权重 (或简并度), ε_i是第 *i* 个态的能量。简并度按以下方法计算: 对于单原子,简并度 g_i = 2J + 1, J 为电子总 (旋轨耦合) 轨道角动量量子数;对于多原子分子,简 并度即为自旋多重度与各激发态所属点群的不可约表示维数之积。对于个别分子,由于一些算法的 缺陷,会得到一个与基态能量很接近的准激发态。本文取其和基态的简并度各占基态总简并度的一 半。

1.2 热熔和熵

考虑到平动、转动、振动及电子配分函数对热容和熵的贡献,气态单原子的总热容 ($C^{\Theta}_{p,m}$) 和 熵 (S^{Θ}_{m}) 的表达式为:

$$C_{p,m}^{\theta} = \frac{5}{2}R + \frac{R}{(kT)^{2}} \left[\frac{\sum_{i} g_{i}\varepsilon_{i}^{2} \exp\left(-\frac{\varepsilon_{i}}{kT}\right) \sum_{i} g_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right) - \left(\sum_{i} g_{i}\varepsilon_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right)\right)^{2}}{\left(\sum_{i} g_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right)\right)^{2}} \right]$$
(6)

$$S_{m}^{\theta} = R \left\{ \frac{5}{2} + \ln \left[\left(\frac{2\pi m kT}{h^{2}} \right)^{3/2} \frac{kT}{p^{\theta}} \right] + \ln \left(\sum_{i} g_{i} \exp \left(-\frac{\varepsilon_{i}}{kT} \right) \right) + \frac{1}{kT} \frac{\sum_{i} g_{i} \varepsilon_{i} \exp \left(-\frac{\varepsilon_{i}}{kT} \right)}{\sum_{i} g_{i} \exp \left(-\frac{\varepsilon_{i}}{kT} \right)} \right\}$$
(7)

气态双原子分子 (理想气体) 的总热容 ($C^{\Theta}_{p,m}$) 和熵 (S^{Θ}_{m}) 的表达式为:

$$C_{p,m}^{\theta} = \frac{5}{2}R + R\left[1 + \frac{1}{45}\left(\frac{B}{kT}\right)^{2}\right] + \frac{R\mu^{2}\exp(-\mu)}{[1 - \exp(-\mu)]^{2}} + \frac{R}{(kT)^{2}}\left[\frac{\sum_{i}g_{i}\varepsilon_{i}^{2}\exp\left(-\frac{\varepsilon_{i}}{kT}\right)\sum_{i}g_{i}\exp\left(-\frac{\varepsilon_{i}}{kT}\right) - \left(\sum_{i}g_{i}\varepsilon_{i}\exp\left(-\frac{\varepsilon_{i}}{kT}\right)\right)^{2}}{\left(\sum_{i}g_{i}\exp\left(-\frac{\varepsilon_{i}}{kT}\right)\right)^{2}}\right]$$
(8)

$$S_{m}^{\theta} = R \Biggl\{ \frac{5}{2} + \ln \Biggl[\left(\frac{2\pi m kT}{h^{2}} \right)^{3/2} \frac{kT}{p^{\theta}} \Biggr] + \ln \Biggl[\sum_{i} g_{i} \exp \Biggl(-\frac{\varepsilon_{i}}{kT} \Biggr) \Biggr] + \frac{1}{kT} \frac{\sum_{i} g_{i} \varepsilon_{i} \exp \Biggl(-\frac{\varepsilon_{i}}{kT} \Biggr) \Biggr] \Biggr\}$$

$$+ R \Biggl\{ \Biggl[1 - \ln \Biggl(\frac{B\sigma}{kT} \Biggr) - \frac{1}{90} \frac{B}{kT} \Biggr] + \Biggl[\frac{\mu}{\exp(\mu) - 1} - \ln(1 - \exp(\mu)) \Biggr] \Biggr\}$$

$$(9)$$

式中, $B = h/8c\pi^2 I$, c 是真空中的光速, $\mu = \omega/(kT)$, ω 是谐振子的基频。 气态线性多原子分子的总热容 ($C_{p,m}^{\Theta}$) 和熵 (S_{m}^{Θ}) 的表达式为:

$$C_{p,m}^{\theta} = \frac{7}{2}R + R \sum_{i=1}^{3n-5} \left\{ \exp\left(\frac{h\nu_{i}}{kT}\right) \left[\frac{h\nu_{i}/kT}{\exp(h\nu_{i}/kT)-1}\right]^{2} \right\} + \frac{R}{(kT)^{2}} \left[\frac{\sum_{i} g_{i}\varepsilon_{i}^{2} \exp\left(-\frac{\varepsilon_{i}}{kT}\right) \sum_{i} g_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right) - \left(\sum_{i} g_{i}\varepsilon_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right)\right)^{2}}{\left(\sum_{i} g_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right)\right)^{2}} \right]$$
(10)

$$S_{m}^{\theta} = R \left\{ \frac{7}{2} + \ln \left[\left(\frac{2\pi m kT}{h^{2}} \right)^{3/2} \frac{kT}{p^{\theta}} \right] + \ln \left(\sum_{i} g_{i} \exp \left(-\frac{\varepsilon_{i}}{kT} \right) \right) + \frac{1}{kT} \frac{\sum_{i} g_{i} \varepsilon_{i} \exp \left(-\frac{\varepsilon_{i}}{kT} \right)}{\sum_{i} g_{i} \exp \left(-\frac{\varepsilon_{i}}{kT} \right)} \right\} + R \left\{ \ln \left(\frac{8\pi^{2} I kT}{\sigma h^{2}} \right) + \sum_{i=1}^{3n-5} \left[\frac{h v_{i} / kT}{\exp(h v_{i} / kT) - 1} - \ln(1 - \exp(-h v_{i} / kT)) \right] \right\}$$
(11)

气态非线性多原子分子的总热容 ($C^{\Theta}_{p,m}$) 和 熵(S^{Θ}_{m})的表达式为:

$$C_{p,m}^{\theta} = 4R + R \sum_{i=1}^{3n-6} \left\{ \exp\left(\frac{h\nu_{i}}{kT}\right) \left[\frac{h\nu_{i}/kT}{\exp(h\nu_{i}/kT) - 1} \right]^{2} \right\}$$

$$+ \frac{R}{(kT)^{2}} \left[\frac{\sum_{i} g_{i}\varepsilon_{i}^{2} \exp\left(-\frac{\varepsilon_{i}}{kT}\right) \sum_{i} g_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right) - \left(\sum_{i} g_{i}\varepsilon_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right)\right)^{2}}{\left(\sum_{i} g_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right)\right)^{2}} \right]$$

$$(12)$$

$$S_{m}^{\theta} = R \left\{ 4 + \ln\left[\left(\frac{2\pi mkT}{h^{2}}\right)^{3/2} \frac{kT}{p^{\theta}}\right] + \ln\left(\sum_{i} g_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right)\right) + \frac{1}{kT} \frac{\sum_{i} g_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right)}{\sum_{i} g_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right)} \right\} + R \left\{ \ln\left(\frac{8\pi^{2} (2\pi kT)^{3/2}}{\sigma h^{3}} \sqrt{I_{x}I_{y}I_{z}}\right) + \sum_{i=1}^{3n-6} \left[\frac{hv_{i}/kT}{\exp(hv_{i}/kT) - 1} - \ln(1 - \exp(-hv_{i}/kT))\right] \right\}$$
(13)

1.3 标准生成焓和标准生成吉布斯自由能

标准生成焓 $\Delta_f H_m^{\theta}$ 和标准生成吉布斯自由能 $\Delta_f G_m^{\theta}$ 通过原子化反应 [式 (14)] 计算。具体计算 公式见式 (15) 及式 (16):

$$A_m B_n C_x D_y(gas) \to mA(gas) + nB(gas) + xC(gas) + yD(gas)$$
(14)

$$\Delta_{\rm f} H^{\theta}_m \left(A_m B_n C_x D_y, g, T \right) = \sum_i^{\rm atoms} \mu_i \Delta_{\rm f} H^{\theta}_m (i, g, T) - \Delta_{\rm r} H^{\theta}_m (T)$$
(15)

$$\Delta_{\rm f} G_m^{\theta} \left(A_m B_n C_x D_y, g, T \right) = \sum_i^{\rm atoms} \mu_i \Delta_{\rm f} G_m^{\theta}(i, g, T) - \Delta_{\rm r} G_m^{\theta}(T)$$
(16)

其中, μ_i 代表第*i*个物种的化学计量数,原子*i*的 $\Delta_f H_m^{\Theta}(i,g,T)$ 和 $\Delta_f G_m^{\Theta}(i,g,T)$ 是从 JANAF^[17](或 CODATA^[18])中查到的实验数据。式中的 $\Delta_r H_m^{\Theta}(T)$ 和 $\Delta_r G_m^{\Theta}(T)$ 是由以下公式计算得到的反应焓变 及反应言布斯自由能变:

$$\Delta_{\rm r} H_m^{\theta}(T) = \sum_i \mu_i H_m^{\theta}(298.15\rm{K}) + \int_{298.15}^T \sum_i \mu_i C_{p,m}^{\theta}(T) dT$$
(17)

$$\Delta_{\rm r} G_m^{\theta}(T) = \Delta_{\rm r} H_m^{\theta}(T) - T \left[\sum_i \mu_i S_m^{\theta}(298.15\rm{K}) + \int_{298.15}^T \sum_i \mu_i C_{p,m}^{\theta}(T) \frac{dT}{T} \right]$$
(18)

其中, $H_{m}^{\theta}(298.15K)$ 是由 G3(MP2)和 G3//B3LYP 方法计算的电子能量结合统计热力学处理所得 298.15K下的标准焓, $C_{p,m}^{\theta}(T)$ 是标准摩尔热容拟合结果, $S_{m}^{\theta}(298.15K)$ 是 298.15K下的标准熵。

2 结果与讨论

2.1 分子结构

采用密度泛函 (Density Functional Theory, DFT) 理论,通过 Gaussian 09^[19] 程序,使用 B3PW91/6-31G(d) 方法对气相产物 (包括同分异构体) 进行计算,频率如果无负值可认为分子为稳定结构。它们的化学式,分子结构,电子态以及对称性如图1所示。

图 1 用 B3PW91/6-31G(d) 方法计算得到 JANAF 中可查到实验数据的 16 种气相产物的化学式、 稳定结构、电子态和对称性

Figure 1 Numbering, stable structure (symmetry and electronic state) of the 16 species in the JANAF obtained based on B3PW91/6-31G(d) calculations

 $\cdot 284 \cdot$

表1 用 B3PW91/6-31G(d)方法计算得到的分子振动频率 (cm⁻¹) 乘以校正因子^[20]0.9573 和 红外光谱强度(km/mol)

 Table 1 Vibrational frequencies (cm⁻¹) and IR intensities (km/mole) calculated with B3PW91/6-31G(d).

 The listed frequencies have been scaled by the factor of 0.9573

Species	Vibrational frequencies (IR intensities)
$NH(C_{\infty v}, {}^{3}\Sigma)$	3135.2(41.5)
$NH_2(C_{2v}, {}^2B_1)$	1532.1(19.5), 3200.7(15.1), 3307.1(12.3)
$\mathrm{NH}_3(\mathrm{C}_{3\mathrm{v}},{}^1\mathrm{A}_1)$	1075.7(171.3), 1653.2(17.8), 1653.2(17.8), 3317.8(0.3), 3451.9(0.0), 3451.9(0.0)
$BN(C_{\infty v}, {}^{3}\Pi)$	1516.0(1.0)
$N_2(D_{\infty h}, {}^1\Sigma_g)$	2365.8(0.0)
$N_2H_2((C_{2v}, {}^1A_1)$	1233.5(0.0), 1332.4(5.0), 1514.6(59.1), 1626.5(9.4), 2938.3(135.8), 3041.2(58.3)
$N_2H_4(C_{2h}, {}^1A_g)$	166.4(142.6), 937.3(0.0), 1047.3(194.5), 1086.3(1.0), 1236.8(0.0),1453.1(0.0), 1608.8(51.4), 1666.2(0.0), 3277.1(0.0), 3296.0(4.0),3363.6(0.0), 3384.8(1.5)0.00, 0.00,
B ₃ N ₃ H ₆ (D _{3h} , ¹ A ₁ ')	$\begin{array}{l} 273.1(0.0), 273.1(0.0), 380.8(27.9), 497.1(0.6), 497.1(0.6), 681.4(0.0), \\ 681.4(0.0), 702.3(61.8), 826.5(0.0), 881.1(0.0), 881.1(0.0), 891.3(252.3), \\ 903.2(0.0), 903.2(0.0), 904.3(0.0), 997.4(0.0), 986.4(0.5), 1030.4(0.5), \\ 1201.6(0.0), 1257.4(0.0), 1340.6(7.2), 1340.6(7.2), 1436.1(497.3), \\ 1436.1(497.3), 2527.5(296.0), 2527.5(296.0), 2537.2(0.0), 3484.7(0.0), \\ 3486.4(43.3), 3486.4(43.3)\end{array}$
$SiN(C_{\infty v},^{2}\Sigma)$	1131.6(16.3)
$C_2 N(D_{\infty v},^2 \Pi_g)$	231.6(9.9), 401.7(4.4), 1310.1(0.0), 1554.6(47.1)
$C_2N_2(D_{\text{ovv}},{}^1\Sigma_g)$	254.2(19.2), 254.2(19.2), 566.1(0.0), 566.1(0.0), 895.3(0.0), 2283.1(0.0), 2453.7(0.0)
$C_4N_2(D_{\text{wv}},{}^1\!\Sigma_g)$	$\begin{array}{l} 119.5(10.3), 119.5(10.3), 292.7(0.0), 292.7(0.0), 524.7(5.3), 524.7(5.3), \\ 561.1(0.0), 561.1(0.0), 625.1(0.0), 1205.8(0.0), 2232.8(0.0), 2366.0(10.7), \\ 2402.8(0.0) \end{array}$
$\text{CClN}(C_{\infty v}, {}^{1}\Sigma)$	396.7(3.9), 396.7(3.9), 758.1(8.8), 2336.5(44.2)
$CHN(C_{\infty v}, {}^{1}\Sigma)$	769.3(38.2), 769.3(38.2), 2219.4(1.9), 3488.1(51.7)
$CN_2(C_{\infty v}, {}^3\Sigma)$	393.2(7.5), 393.2(7.5), 1304.7(13.4), 1553.9(1.0)
$CN_2(D_{\infty v}, {}^3\Sigma_g)$	426.6(18.7), 426.6(18.7), 1284.0(0.0), 1576.3(190.4)

表 2 用 TD-DFT B3PW91/6-31G(d) 方法计算得到的分子 <1.860 eV 的垂直激发能 Table 2 Low-lying (<1.860 eV) vertical electronic excitation energies calculated with TD-DFT at B3PW91/6-31G(d) level

~ ·	Electronic excited state, energy and quantum weight			
Species	Excited state	ε_{i}^{a} / eV	$\mathbf{g_i}^{\mathrm{b}}$	
BN($C_{\infty v}$, $^{3}\Pi$)	$^{3}\Sigma$	0.0184	3	
	$^{3}\Sigma$	1.5864	3	
$SiN(C_{\infty v}, ^{2}\Sigma)$	$^{2}\Pi$	0.2753	4	
	$^{2}\Pi$	0.2753	4	
$C_2 N(D_{\infty v}, {}^2\Pi_g)$	$^{2}\Pi$	0.0111	4	

^aε_i每个激发态对应的激发能;^bg_i量子权重(简并度)。

2.2 振动频率

同样采用 B3PW91/6-31G(d) 方法计算得到体系相关气相产物的振动频率 (频率的校正因子^[20] 为 0.9573) 和红外光谱强度,结果如表 1 所示。可以看到所有分子频率均为正值,说明所有分子都 是稳定结构。这些频率将用来计算分子的振动配分函数。

2.3 电子激发能

文献 [21] 表明当分子的电子激发能小于 1.860 eV 时,对于统计热力学计算热熔和熵的影响不可忽略。表 2 为采用 TD-DFT B3PW91/6-31G(d) 方法计算得到的所有气相产物在 1.860 eV 范围内的激发态,垂直激发能以及简并度。这些激发能将用来计算分子的电子配分函数。

2.4 热熔和熵

由前面计算所得数据 (分子结构、振动频率及激发能) 再结合统计热力学,根据式 (8)~(13) 便 可算出分子在 298.15 K 的标准摩尔热容 $C^{\theta}_{p,m}$ 和熵 S^{θ}_{m} 。表 3 为计算得到的数据以及文献中可查到的 实验数据。可见,与文献的实验数据相比,热容值偏差最大是 N₂H₄分子,为 4.333 J·mol⁻¹·K⁻¹;熵 值偏差最大的是 NH 分子,为 9.223 J·mol⁻¹·K⁻¹;其它分子热容和熵的计算值与实验值符合都很好。

Spacios	$C_p / \operatorname{J} \cdot \operatorname{mol}^{-1} \cdot \operatorname{K}^{-1}$		$S / \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$		
Species	Calculated	Calculated Experimental		Experimental	
$NH(C_{\infty v}, {}^{3}\Sigma)$	29.10	29.147	172.03	181.253	
$NH_2(C_{2v}, {}^2B_1)$	33.49	33.572	189.05	194.707	
$NH_3(C_{3v}, {}^1A_1)$	34.69	35.652	192.45	192.774	
$BN(C_{\infty v}, {}^{3}\Pi)$	30.38	29.450	208.86	212.358	
$N_2(D_{\infty h}, {}^1\Sigma_g)$	29.11	29.124	191.67	191.609	
$N_2H_2(C_{2v}, {}^1A_1)$	34.83	36.554	218.37	218.603	
$N_2H_4(C_{2h}, {}^1A_g)$	46.48	50.813	236.93	238.719	
$B_3N_3H_6(D_{3h}, {}^1A_1')$	95.32	96.927	287.87	288.723	
$SiN(C_{\infty v},^2\Sigma)$	30.22	30.168	211.02	216.812	
$C_2 N(D_{\text{ov}}, {}^2\Pi_g)$	44.01	45.751	238.86	230 ± 8	
$C_2N_2(D_{\rm \scriptscriptstyle \infty v},{}^1\Sigma_g)$	55.39	56.746	245.55	241.565	
$C_4N_2(D_{\rm \infty v},{}^1\Sigma_g)$	84.11	85.888	291.34	290.112	
$\text{CCIN}(C_{\infty v}, {}^{1}\Sigma)$	44.64	45.271	235.70	236.334	
$CHN(C_{\infty v}, {}^{1}\Sigma)$	35.13	35.857	201.42	201.828	
$CN_2(C_{\infty v}, {}^3\Sigma)$	42.52	42.281	222.99	231.716	
$CN_2(D_{\infty v}, {}^3\Sigma_g)$	41.95	42.192	222.78	226.21 ± 0.42	

表 3 由统计热力学计算得到的 298.15 K 时分子热容 $C_{p,m}^{\theta}$ 和熵 S_{m}^{θ} Table 3 Heat capacity $C_{p,m}^{\theta}$ and entropy S_{m}^{θ} (298.15 K) calculated based on statistical thermodynamics

2.5 分子能量

表 4 为采用 G3(MP2) 和 G3//B3LYP 方法计算所得分子能量 (即 0 K 时的热力学能, U_{0K}) 以及 在 298.15 K 分子焓的热修正 (H_{corr}) 和分子吉布斯自由能的热修正 (G_{corr})。分子在 298.15 K 的标准 焓值为 U₀和 H_{corr}之和,标准吉布斯自由能为 U₀和 G_{corr}之和。

Species (symmetry, state)	U _{0 K} [G3(MP2)]	$U_{0\mathrm{K}}$ [G3//B3LYP]	$H_{\rm corr}$	$G_{ m corr}$		
$NH(C_{\infty v}, {}^{3}\Sigma)$	-55.155	-55.194	0.003280	-0.01625		
$NH_2(C_{2v}, {}^2B_1)$	-55.801	-55.840	0.003780	-0.01768		
$NH_3(C_{3v}, {}^1A_1)$	-56.470	-56.508	0.003805	-0.01805		
$BN(C_{\infty v}, {}^{3}\Pi)$	-79.297	-79.373	0.003708	-0.02001		
$N_2H_2((C_{2v}, {}^1A_1)$	-110.488	-110.568	0.003803	-0.02099		
$N_2H_4(C_{2h}, {}^1A_g)$	-111.696	-111.774	0.004496	-0.02241		
$B_3N_3H_6(D_{3h}, {}^1A_1')$	-242.255	-242.486	0.006237	-0.02647		
$SiN(C_{\infty v}, {}^{2}\Sigma)$	-343.636	-343.960	0.003324	-0.02064		
$C_2 N(D_{\infty v}, {}^2\Pi_g)$	-130.572	-130.688	0.005702	-0.02856		
$C_2 N_2(D_{\infty v}, {}^1\Sigma_g)$	-185.412	-185.574	0.005798	-0.02883		
$C_4N_2(D_{\infty v},{}^1\!\Sigma_g)$	-261.450	-261.689	0.005668	-0.02859		
$\text{CCIN}(C_{\infty v}, {}^{1}\Sigma)$	-552.447	-552.832	0.006957	-0.03084		
$CHN(C_{\infty v}, {}^{1}\Sigma)$	-93.299	-93.378	0.006632	-0.03146		
$CN_2(C_{\infty v}, {}^3\Sigma)$	-147.249	-147.369	0.006648	-0.03111		
$CN_2(D_{\infty v}, {}^3\Sigma_g)$	-147.299	-147.419	0.006142	-0.03039		

表 4 用 G3(MP2) 和 G3//B3LYP 计算得到的分子能量 (U_{0K}) 和热修正 (单位为 Hartrees) Table 4G3(MP2) and G3//B3LYP energy (U_{0K}) , thermal correction to enthalpy (H_{corr}) and to Gibbs free energy (G_{corr}) (all in Hartrees) at 298.15K

表 5 气相 Si、B、C、N、H 和 Cl 原子的 $\Delta_{f}H_{m}^{\Theta}(298.15 \text{ K})$ 和 $\Delta_{f}G_{m}^{\Theta}(298.15 \text{ K})$ 实验数据^[17,18] Table 5 The experimental data of $\Delta_{f}H_{m}^{\Theta}(298.15 \text{ K})$ and $\Delta_{f}G_{m}^{\Theta}(298.15 \text{ K})$ of the gaseous Si, B, C, N, H and Cl atoms

51, 2, 0, 1, 11 und 01 utomb						
Data Atom	$\Delta_{\rm f} H_{\rm m}^{-\theta}(298.15{ m K})$ / kJ·mol ⁻¹	$\frac{\Delta_{\rm f} G_{\rm m}^{-\theta}(298.15{\rm K})}{/{\rm kJ}\cdot{\rm mol}^{-1}}$				
Si	450 ± 8	405.53				
В	565 ± 5	521.00				
С	716.67 ± 0.46	671.24				
Ν	218.00 ± 0.01	455.54				
Н	218.00 ± 0.01	203.28				
Cl	121.30 ± 0.01	105.31				

2.6 标准生成焓和标准生成吉布斯自由能

由式 (15)~(18) 可以看出,计算分子的标准生成焓 $\Delta_f H_m^{\Theta}(298.15 \text{ K})$ 和标准生成吉布斯自由能 $\Delta_f G_m^{\Theta}(298.15 \text{ K})$ 必须结合相关原子的实验数据。表 5 是所用到的 Si、B、C、N、H 和 Cl 原子的 实验数据,其中 B 原子的数据来自 CODATA ^[18],其它原子的数据均来自 JANAF ^[17]热力学数据表, 这是因为 JANAF 给出的 B 原子生成焓为 560 ± 12 kJ·mol⁻¹,不确定度为 ±12 kJ·mol⁻¹,而 CODATA 给出的 B 原子生成焓为 565 ± 5 kJ·mol⁻¹,不确定度为 ±5 kJ·mol⁻¹。

根据公式 (15) ~ (18) 结合表 3、表 4 和表 5 的数据,便可计算出各个分子的标准摩尔生成焓 $\Delta_{f}H_{m}^{\theta}(298.15 \text{ K})$ 和标准摩尔生成吉布斯自由能 $\Delta_{f}G_{m}^{\theta}(298.15 \text{ K})$,分别用 G3(MP2) 和 G3//B3LYP 方法计算所得结果和实验值如表 6 所示。

由表 6 可以看出,G3(MP2) 方法和 G3//B3LYP 方法的计算结果基本一致,除 B₃N₃H₆分子相差 17.67 kJ·mol⁻¹ 以外,两种方法的计算差值都在 $\pm 10 \text{ kJ·mol}^{-1}$ 以内。

表 6	G3(MP2) 和 G3//B3LYP 方法计算得到的分子 298.15 K 标准摩尔生成焓 $\Delta_{f}H_{m}^{\circ}$	"和
	标准摩尔吉布斯自由能 $\Delta_{\mathbf{f}} G_{\mathbf{m}}^{ m{ heta}}$ 与实验值的对比	

Table 6 Standard enthalpies of formation $\Delta_f H_m^{\theta}(298.15K)$ and Gibbs free energies of formation $\Delta_f G_m^{\theta}(298.15K)$ predicted with G3(MP2) and G3//B3LYP theories and the comparisons with available experiments

Species	$\Delta_{\rm f} H_{\rm m}^{\ \theta}(298.15 \ {\rm K}) / {\rm kJ} \cdot {\rm mol}^{-1}$			$\Delta_{\rm f} G_{\rm m}^{- heta}(298.15~{ m K}) / { m kJ} \cdot { m mol}^{-1}$		
(symmetry, state)	G3(MP2)	G3//B3LYP	Experimental	G3(MP2)	G3//B3LYP	Experimental
$NH(C_{\infty v}, {}^{3}\Sigma)$	351.2	351.7	376.56	342.8	343.3	370.56
$NH_2(C_{2v}, {}^2B_1)$	186.2	185.2	190.37	190.5	189.5	199.85
$NH_3(C_{3v}, {}^1A_1)$	-41.8	-43.0	-45.90	-20.8	-22.0	-16.37
BN($C_{\infty v}$, $^{3}\Pi$)	500.6	499.8	476.98	464.2	463.4	443.96
$N_2H_2(C_{2v}, {}^1A_1)$	227.2	224.3	212.97	247.8	245.0	243.88
$N_2H_4(C_{2h}, {}^1A_g)$	116.1	112.7	95.35	166.7	163.4	159.23
$B_3N_3H_6(D_{3h}, {}^1A_1')$	-491.9	-509.5	-510.03	-393.6	-411.2	-388.32
$SiN(C_{\infty v}, ^{2}\Sigma)$	467.7	466.7	372.4 ± 62.8	435.7	434.6	341.9 ± 62.8
$C_2 N(D_{\infty v},^2 \Pi_g)$	669.5	673.8	556 ± 126	626.3	630.6	519.62
$C_2N_2(D_{\text{ovv}},{}^1\!\Sigma_g)$	308.3	300.3	309.07	288.2	280.3	297.60
$C_4N_2(D_{\infty v},{}^1\!\Sigma_g)$	528.8	520.4	533.46	497.9	489.6	510.94
$\operatorname{CClN}(\operatorname{C}_{\infty v}, {}^{1}\Sigma)$	131.0	130.5	137.95	121.0	120.4	131.02
$CHN(C_{\infty v}, {}^{1}\Sigma)$	130.2	127.7	135.1 ± 8.4	114.5	111.9	124.72
$CN_2(C_{\infty v}, {}^3\Sigma)$	579.2	575.1	585 ± 126	564.5	560.3	574.26
$CN_2(D_{\infty v}, {}^3\Sigma_g)$	446.5	445.1	473 ± 21	431.7	430.3	464.19

与 JANAF 数据表中可以查到的实验数据相比,G3//B3LYP 方法计算的理论差值分别为 24.86, 5.172,2.898,22.824,11.334,17.347,0.53,94.324,117.86,8.682,12.99,7.426,7.44,9.82 和 27.89 kJ·mol⁻¹。SiN(C_{ov} ,² Σ) 和 C₂N(D_{ov} ,² Π_g) 与实验数据偏差较大,分别为 94 和 117kJ·mol⁻¹。可以看到 这两个分子实验数据的误差范围较大,可靠性低。而其它分子的计算结果与实验结果符合都很好。

参考文献

- [1] 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展 [J]. 航空制造技术, 2003, (1): 24-32.
- [2] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24 (2): 1-6.
- [3] WANG ZC, ALDINGER F, RIEDEL R. Novel silicon-boron-carbon-nitrogen materials thermally stable up to 2200°C [J]. Journal of the American Ceramic Society, 2001, 84 (10): 2179–2183.
- [4] 姚小平. 丙烯热解制备 PyC 的气相反应热力学与 Ar@C₆₀包合物力学性能的研究[D]. 西安: 西北工 业大学硕士学位论文, 2007.
- [5] YAO X, SU K, DENG J, et al. Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis [J]. Computational Materials Science, 2007, 40 (4): 504–524.
- [6] 邓娟利. CVD/CVI 制备自愈合 SiC 陶瓷基复合材料的反应热力学研究[D]. 西安:西北工业大学博士 学位论文, 2009.
- [7] DENG J, SU K, ZENG Q, et al. Thermodynamics of the production of condensed phases in the CVD of methyltrichlorosilane pyrolysis [J]. Chemical Vapor Deposition, 2009, 15 (10–12): 281–290.
- [8] DENG J, SU K, WANG X, et al. Thermodynamics of the gas-phase reactions in chemical vapor deposition of silicon carbide with methyltrichlorosilane precursor [J]. Theoretical Chemistry Account, 2008, 122

(1-2): 1-22.

- [9] 曾艳. BCl₃-CH₄-H₂体系 CVD 制备碳化硼的气相反应热力学研究[D]. 西安: 西北工业大学硕士学位 论文, 2008.
- [10] ZENG Y, SU K, DENG J, et al. Thermodynamic investigation of the gas-phase reactions in the chemical vapor deposition of boron carbide with BCl₃--CH₄-H₂ precursors [J]. Journal of Molecular Structure: THEOCHEM, 2008, 861 (1-3): 103-116.
- [11] 王涛. BCl₃-C₃H₆(丙烯)-H₂体系 CVD 制备碳化硼的气相反应热力学研究[D]. 西安: 西北工业大学硕 士学位论文, 2008.
- [12] WANG T, SU K, DENG J, et al. Reaction thermodynamics in chemical vapor deposition of boron carbides with BCl₃-C₃H₆ (propene)-H₂ precursors [J]. Journal of Theoretical and Computational Chemistry, 2008, 7 (6): 1269–1312.
- [13] REN H, ZHANG L, SU K, et al. Thermodynamics investigation of the gas-phase reactions in the chemical vapor deposition of silicon borides with BCl₃–SiCl₄–H₂ precursors [J]. Structural Chemistry, 2014, 25 (5): 1369–1384.
- [14] REN H, ZHANG L, SU K, et al. Thermodynamic study on the chemical vapor deposition of boron nitride from the BCl₃–NH₃–H₂ system [J]. Theoretical Chemistry Account, 2014, 133 (11): 1–13.
- [15] REN H, ZHANG L, SU K, et al. Thermodynamic study on the chemical vapor deposition of silicon nitride from the SiCl₄–NH₃–H₂ system [J]. Computational and Theoretical Chemistry, 2015, 1051: 93–103.
- [16] REN H, ZHANG L, SU K, et al. Thermodynamic study of the chemical vapor deposition in the SiCl₃CH₃-NH₃-H₂ system [J]. Chemical Physics Letters, 2015, 623: 29–36.
- [17] CHASE MW. NIST-JANAF thermochemical tables forth edition [J]. Journal of Physical and Chemical Reference Data, 1998, Monograph 9.
- [18] HAYNES WM. CRC Handbook of Chemistry and Physics [M]. Boca Raton: CRC Press, 2015.
- [19] FRISCH MJ, TRUCKS GW, SCHLEGEL HB, et al. Gaussian 09 [M]. Wallingford, CT, USA, Gaussian, Inc., 2009.
- [20] SCOTT AP, RADOM L. Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors [J]. The Journal of Physical Chemistry, 1996, 100 (41): 16502–16513.
- [21] DENG J, SU K, ZENG Y, et al. Investigation of thermodynamic properties of gaseous SiC (X and a) with accurate model chemistry calculations [J]. Physica A, 2008, 387 (22): 5440–5456.

The Calculation of the Thermodynamic Data of the Gas-Phase in the Chemical Vapor Deposition of the Si-B-C-N-H-CI System

REN Hai-Tao^{1,2}, LIU Jia-Chen¹, GUO An-Ran¹

¹ Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

²Science and Technology on Thermostructure Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Abstract: The thermodynamic data of the gas-phase in the chemical vapor deposition of the Si-B-C-N-H-Cl system include the heat capacities, entropies, enthalpies of formation and Gibbs free energies of formation ware calculated with the reliable theoretical method of quantum mechanics combined with standard statistical thermodynamics. This work provides more fundamental data for analyzing the thermochemistry of the CVD process of the Si-B-C-N-H-Cl system and its subsystems.

Key words: SiBCN ceramic; CVD; Thermodynamic