中图分类号: TF1 文献标识码: A 文献编号: 1005-1198 (2019) 03-0191-08 DOI: 10.16253/j.cnki.37-1226/tq.2019.03.004

研究论文

SiC_w对WC-ZrO₂材料微观组织及力学性能的影响

陈国清,任媛媛,付雪松,周文龙

大连理工大学 材料科学与工程学院, 辽宁 大连 116085 辽宁省凝固控制与数字化制备技术重点实验室, 辽宁 大连 116085

摘 要:采用热压烧结工艺制备了 WC-ZrO₂-SiC_w复合材料,研究了 SiC_w含量对材料微观 组织和力学性能的影响。结果表明,随着 SiC_w含量增加,材料平均晶粒尺寸先增大后降低,其 中 WC-ZrO₂-2%SiC_w的晶粒尺寸为 0.55 µm。在 WC-ZrO₂-4%SiC_w中出现了 m-ZrO₂相,这是晶 粒尺寸过大和晶须热膨胀系数较小共同作用的结果。随着 SiC_w含量增加,由于晶粒粗化以及过 量的晶须缠绕会产生孔洞等缺陷,复合材料硬度呈现先降低后略微上升的趋势,其中 WC-ZrO₂-4%SiC_w的硬度最低,仅为 17.8 GPa。断裂韧性随 SiC_w含量的变化先升高后降低,其 中 WC-ZrO₂-2%SiC_w的断裂韧性最高,较未添加 SiC_w的 WC-ZrO₂提高了 12.3%,这是因为 SiC_w 的添加引起裂纹偏转、穿晶断裂和裂纹桥接,从而起到增韧效果。烧结态 WC-ZrO₂-2%SiC_w致 密度可达到 99.4%,其断裂韧性和硬度分别为 9.12 MPa·m^{1/2}和 18.5 GPa。

关键词: WC-ZrO2-SiCw; 微观组织; 力学性能; 裂纹偏转

Effect of SiCw on the Microstructure and Mechanical Properties of WC-ZrO₂

CHEN Guo-Qing, REN Yuan-Yuan, FU Xue-Song, ZHOU Wen-Long

Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China

Abstract: WC-ZrO₂-SiC_w composites were prepared by hot pressing. The effect of SiC_w content on the microstructure and the mechanical properties of composites were studied. The results showed that the average grain size increases at first and then declines with increase of SiC_w content. The average grain size of WC-ZrO₂-2%SiC_w is 0.55 μ m. Due to excessive grain growth and small thermal expansion coefficient of SiC_w, there is m-ZrO₂ in WC-ZrO₂-4%SiC_w. With the increasing of SiC_w

收稿日期: 2019-01-25

基金项目: 国家国际科技合作专项 (2015DFR60370); 航空科学基金 (20153663010); 中央高校基本 科研业务费 (DUT17GF209)。

通讯作者: 陈国清 (1977-), 男, 河南洛阳人, 教授。E-mail: gqchen@dlut.edu.cn。

content, hardness declines dramatically and then picks up slightly because of coarse grains and pores. The hardness of WC-ZrO₂-4%SiC_w is only 17.8 GPa, which is the lowest in all the samples investigated. Fracture toughness increases firstly and then decreases with the increase of SiC_w content. Compared to WC-ZrO₂, the fracture toughness of WC-ZrO₂-2%SiC_w is improved by 12.3% and is the highest one. The reasons of high fracture toughness are crack deflection, transgranular fracture and crack bridging caused by the adding of SiC_w. The relative density of sintered WC-ZrO₂-2%SiC_w is 99.4% and its fracture toughness and hardness is 9.12 MPa·m^{1/2} and 8.5 GPa, respectively.

Keywords: WC-ZrO₂-SiC_w; Microstructure; Mechanical properties; Crack deflection

WC 基硬质合金在切削刀具、冲击工具和耐磨耐蚀零部件等方面应用广泛。但是,WC 自身脆性太大,常会导致刀具崩刃现象。Schröter 发现将WC 与 10 wt% 以内的铁、钴或镍的金属粘结剂粉末混合,压制成型再经 1500°C 烧结后,可以制备出硬度非常高,同时脆性显著改善的WC 材料^[1,2]。然而,金属粘结剂在促进合金烧结致密化的同时也降低了其耐磨性能、耐腐蚀性能、热导率以及耐高温性能,从而限制了其应用领域^[3,4]。为此,制备WC 复合材料以进一步提高其性能便成为研究的热点。

WC 中的化学键主要为共价键,因此 WC 基硬质合金通常归属于金属陶瓷材料^[5],其常用的三 种增韧机理分别为颗粒增韧、相变增韧以及晶须增韧^[6]。目前,WC 复合材料主要有 WC-MgO、 WC-Al₂O₃^[7]和 WC-ZrO₂。有人^[8-10]利用 SPS 制备 WC/MgO 复合材料,发现 MgO 的添加可以阻碍 晶界移动从而获得细晶组织,其断裂韧性高达 12.21 MPa·m^{1/2},但是 MgO 的存在只使裂纹发生偏转, 硬度仅为 15.43 GPa。Biswas 等人^[11]发现 ZrO₂ 的加入可以增强 WC 在烧结时的致密化能力,因此 ZrO₂ 可作为 WC 的助烧剂。李元元等人^[12]发现 WC-ZrO₂ 的断裂韧性能达到 8.42 MPa·m^{1/2}。而 Bikramjit 等人^[13]采用放电等离子烧结 (Spark Plasma Sintering, SPS) 法在 1300°C 下获得了致密的 WC-ZrO₂ 烧结体,硬度高达 24 GPa,而韧性却小于 6 MPa·m^{1/2}。关于晶须增韧 WC 的研究目前较少。SiC 晶 须 (SiC_w) 是当今已知的力学性能最好的晶须材料。孙海军^[14]探究了 SiC_w对 WC 的影响,发现 0.4% 的晶须就能够将材料的断裂韧性提高 32%。目前每种增韧手段都能够不同程度地提高 WC 的断裂韧 性,但是各自也存在局限性。比如 ZrO₂会在高温下失去相变增韧作用^[15]。而碳化硅晶须的添加在高 温下仍有补强作用,因此两种强韧化手段的结合可能会产生叠加效果。

本文将以 WC 硬质合金为基体材料,探索通过 SiC 晶须与 ZrO₂ 的协同增韧来提高其综合力学性能的可能性。

1 实验材料与方法

本研究采用的粉末形貌如图 1 所示。其中 ZrO₂ 粉为 3 mol% Y₂O₃ 稳定的四方相粉体。固定 ZrO₂ 含量为 14 wt%, SiC_w含量分别为 0 wt%、2 wt%、4 wt% 和 6 wt%, 按下述流程分别制备了 4 种复 合材料: WC-14%ZrO₂ (记为 WZS0)、WC-14%ZrO₂-2%SiC_w (记为 WZS2)、WC-14%ZrO2-4%SiC_w (记为 WZS4) 和 WC-14%ZrO2-6%SiC_w (记为 WZS6)。

材料的制备过程为: 首先利用机械球磨对 WC 和 ZrO₂ 粉料进行湿磨, 然后将 SiC 晶须加入到混料中进行超声分散; 对干燥后的混合粉末 [粉体形貌如图 1 (d) 所示] 进行热压烧结, 烧结温度 1650°C, 保温时间 1 h。

利用 XRD 和 SEM 对烧结制品进行物相分析和显微组织观察,利用截线法测量晶粒尺寸。采用 阿基米德法测密度,采用压痕法测量硬度和断裂韧性。

图 1 原材料及球磨混合后的粉末形貌 Figure 1 SEM micrographs of raw materials and mixed powders prepared by ball milling (a) WC; (b) ZrO₂; (c) SiC_w; (d) WC-14%ZrO₂-6%SiC_w

2 结果与讨论

根据文献研究, ZrO_2 含量为 14 wt% 时,相变增韧效果最佳。研究证明 ZrO_2 受到外力作用时会 发生 $t \rightarrow m$ 的马氏体相变从而产生体积膨胀,表现出显著的增韧作用^[16]。但是, ZrO_2 相变增韧在高 温下会失效,而 SiC_w的添加在高温下仍有补强作用,因此本文主要研究了 SiC_w与 ZrO_2 的协同增韧 作用。

2.1 SiCw含量对复合材料物相的影响

图 2 所示为烧结后的 4 种复合材料的 XRD 图谱。可以看出,所有 4 种复合材料中均只有 WC, ZrO₂和 SiC_w相存在,说明在烧结过程中原始粉料之间均不互相发生化学反应。注意到 WZS0、WZS2 和 WZS6 这 3 种材料均由 WC, *t*-ZrO₂和 SiC_w相组成,而 WZS4 中则出现了 *m*-ZrO₂相。本研究采 用的是 3Y-ZrO₂粉,在理想情况下 3Y-ZrO₂粉能够完全将 *t*-ZrO₂完全保留至室温而不发生马氏体相 变。而晶须添加量达到 4 wt% 时出现了 *m*-ZrO₂,说明部分 *t*-ZrO₂在降温过程中失稳发生了马氏体 相变。这应该是因为热膨胀系数不匹配导致的^[17]。该拉应力有利于氧化锆发生 *t* → *m* 相变。WC 的 热膨胀系数为 6.9 × 10⁻⁶/K,小于 ZrO₂的热膨胀系数,所以 WC 晶面承受 ZrO₂引入的压应力,该压 应力有利于基体对 *t*-ZrO₂的束缚,能够将更多的亚稳 *t*-ZrO₂保留至室温,从而发挥相变增韧作用。 但是 SiC_w的热膨胀系数为 4.3 × 10⁻⁶/K,低于 WC,所以 SiC_w在 WC 中引入张应力,部分抵消了 ZrO₂ 在 WC 中引入的压应力,使得基体对 *t*-ZrO₂的束缚减弱,从而诱发 *t*→*m* 相变^[17,18]。下文中将提及, WZS6 样品的晶粒尺寸要小于 WZS4。当氧化锆尺寸小于临界相变尺寸时会很难发生 *t* → *m* 相变, 所以 WZS6 中不存在 *m* 相^[19]。WZS2 的晶粒尺 寸虽然大于 WZS4,但是由于 WZS2 中晶须含量 较少, SiC_w对 WC 的拉应力较小,所以基体对 ZrO₂的束缚力仍旧很强,也没有出现 *m* 相。综 上所述,*m*-ZrO₂ 的出现是晶须含量和晶粒尺寸 两方面综合作用导致的结果。

此外,对试样抛光面进行 XRD 检测发现复 合材料的 *m*-ZrO₂ 含量很少,说明 SiC_w 的加入 未导致大量的可相变 *t*-ZrO₂转变为 *m*-ZrO₂,这 说明氧化锆应力诱导相变增韧效果并没有受到 较大的削弱,仍然是 WC 基复合材料的一个重 要增韧机制。

2.2 SiCw含量对复合材料微观组织的影响

图 3 是添加不同含量碳化硅晶须后烧结体 的微观组织。能谱分析表明, 白色为 WC 相,

图 2 不同晶须含量 WC-14%ZrO₂-SiC_w材料的 XRD 图谱 Figure 2 XRD patterns of WC-14%ZrO₂-SiC_w composites with different SiC_w contents (a) 0 wt%; (b) 2 wt%; (c) 4 wt%; (d) 6 wt%)

主要呈四方或者三角状;灰色是氧化锆相,呈弯曲勾钳状;黑色是SiCw,晶须取向不一。

由图 3 (c) 和 (d) 可以看出, WZS4 和 WZS6 烧结体中存在有孔洞, 而 WZS0 和 WZS2 则几乎 没有孔洞。这是因为过量的晶须会缠绕在一起,产生架桥作用阻碍颗粒致密化,从而导致孔洞等缺 陷产生。从图 3 (c) 和 (d) 中可以看到晶须长径比不一,分布不均,这也是因为晶须含量过高导致

图 3 不同晶须含量 WC-14%ZrO₂-SiC_w材料的微观组织 Figure 3 SEM micrographs of WC-14%ZrO₂-SiC_w composites with different SiC_w contents (a) 0 wt%; (b) 2 wt%; (c) 4 wt%; (d) 6 wt%)

的。随着晶须长径比的增加,晶须完整性趋好,结构中所包含的缺陷也会减少,晶须性能相应就越高。但是晶须长径比不一会导致单位体积用量增多和界面面积增大,造成复合困难。由于分布不均,部分晶须会缠绕一起,合并长大,导致孔洞增大,进一步恶化性能。此外,晶须长短不一,增韧效 果也会大打折扣。

图 4 示出了 4 种样品中的 WC 晶粒尺寸、ZrO₂ 晶粒尺寸以及平均晶粒尺寸。可以看出,不含晶须的材料,其晶粒明显要比掺杂晶须的晶粒更细小,说明添加一定量的晶须会导致晶粒明显长大。随着晶须含量的增加,晶粒尺寸先增大后降低,其中晶须含量为 2 wt% 时,平均晶粒尺寸最大。WC 和 ZrO₂ 晶粒尺寸也表现出相同的趋势。晶粒尺寸的变化是因为 SiC_w的热膨胀系数小于 WC 和 ZrO₂,因此 SiC_w的添加对二者引入了拉应力,该拉应力会加快晶粒的长大。但是,当 SiC_w含量过高时,晶须会钉扎在晶界周围,其桥架作用会阻碍晶粒的合并长大,因此 WZS4 和 WZS6 样品的晶粒尺寸要相对降低。随着晶须含量的继续增大,晶须阻碍晶粒长大的作用将逐渐减缓。

2.3 SiCw含量对复合材料力学性能的影响

图 5 是 WC-14%ZrO₂-SiC_w复合材料相对密度随晶须含量的变化趋势。4 种烧结体的相对密度均在 97.5%以上,说明少量晶须的加入对复合材料致密化过程没有产生显著的影响^[20]。不添加晶须的复合材料 WZSO 相对密度最高,接近全致密。晶须含量为 6%时,致密度下降到 97.8%,但仍可认为是全致密结构。从图 3 中也可以看出,WZS4 和 WZS6 两个样品的表面存在有数量很少的孔洞。而 WZS0 和 WZS4 表面则很致密。晶须是细长状,具有高比表面积、小尺寸的特点,即使经过分散和清洗处理,还是容易产生缠结,从而在复合材料中导致气孔等缺陷的产生。另外,晶须的回弹作用也会降低致密性。因此,随着晶须含量增加,在热压条件相同时,材料的相对密度会不断降低。

图 6 是不同晶须含量对复合材料硬度的影响规律。可以看出,WZS0 的硬度达到 21.3 GPa,与 文献报道的纯 WC 硬度 23 GPa^[21]相当。ZrO₂本身属于陶瓷材料,其特点就是硬度大,但是 ZrO₂ 的硬度低于 WC,因此氧化锆的添加会略微降低 WC 的硬度。随着晶须含量增多,WC-14%ZrO₂-SiC_w 复合材料的硬度值先显著下降后略微上升。一般来说,脆性材料的硬度随着晶粒尺寸增大而降低^[22]。 WZS2 的平均晶粒尺寸要大于 WZS0,所以 WZS2 的硬度大幅度下降。当晶须含量为 4 wt%,硬度最 低,为 17.9 GPa,但是依旧属于高硬材料。虽然 WZS4 的晶粒尺寸要小于 WZS2,但是前者中团聚 的晶须和孔洞等缺陷会导致其硬度降低。WZS6 的孔洞与 WZS4 相比没有明显增多,但晶粒尺寸要 小于 WZS4,因此其硬度值略微上升。注意到即使添加了晶须,材料的硬度依旧很高,均超过 18 GPa。 这是因为晶须与基体的热膨胀系数不匹配会引起残余应力,而硬度对残余应力很敏感。热膨胀系数 不匹配导致冷却后出现残余应力。当在表面引入一个压痕时,新形成压痕的自由表面会受到压应力 从而缩短压痕对角线长度,导致表观硬度值提高^[23]。

图 6 不同晶须含量 WC-14%ZrO₂-SiC_w材料的硬度和断裂韧性 Figure 6 Hardness and fracture toughness of WC-14%ZrO₂-SiC_w composites with different SiC_w contents

从图 6 中可以看出,随着晶须含量增大,断裂韧性值先升高后降低。其中 WZS2 样品的断裂韧性值最大,达到 9.12 MPa·m^{1/2},相比于 WZS0 提高了 12.3%。WZS2 之所以韧性高,一方面是因为晶须的热膨胀系数小,晶须受到压应力,提高了晶须基体界面的剪切强度,界面的高强度有利于载荷从基体向晶须转移,从而发挥晶须高强度,高模量的特点^[18];另一方面是因为靠晶须桥接、裂纹偏转和纤维拔出等机制来提高韧性。

当晶须含量达到 4 wt%时,断裂韧性迅速下降。原因是 WZS4 样品烧结后部分 t-ZrO₂ 发生了马 氏体转变,因此 ZrO₂ 相变增韧效果减弱。另外晶须含量过多,部分晶须会出现缠绕,导致孔洞等缺 陷产生,弱化晶须与基体的结合,不利于载荷向晶须传递。WZS6 的断裂韧性甚至低于 8 MPa·m^{1/2}。 此外,热膨胀系数失配引起的平均拉应力也会降低基体的负载能力。

图 7 (a) 是 WZS0 样品中的裂纹扩展形貌,可以看出,裂纹比较平直,沿晶扩展比较多,同时 伴有少数的穿晶裂纹;沿晶扩展多发生于 WC 晶粒间,穿晶扩展则主要出现于 ZrO₂ 晶粒内。

图 7 (b)~(d) 是 WZS2 样品中的裂纹扩展形貌。从图 7 (b) 可以看出裂纹呈锯齿状扩展,路径明显更加曲折,说明晶须促进了裂纹偏转。WZS2 样品的晶粒尺寸要大于 WZS0,而 WC 晶粒尺寸变大,沿晶裂纹的路径增长,消耗了裂纹扩展的能量,有利于增韧。此外,WZS2 明显伴有更多的穿晶断裂,晶内强度要大于晶界强度,所以穿晶断裂要消耗更多的基体能量,对韧性的提高做出了贡献^[18]。 图 7 (c) 显示部分裂纹是穿过晶须或者沿着晶须的长度方向扩展,这样均有利于晶须的断裂或者拔出。 晶须断裂和拔出都需要外力做功,晶须直径要大于晶粒尺寸,并且晶须的强度要大于 WC 基体,进 一步提高裂纹扩展需要的能量,因此起到增韧作用^[24]。图 7 (d) 显示 WZS2 样品中存在裂纹桥接现 象。一部分是晶须桥接:裂纹扩展过程中,若晶须/基体界面发生解离,裂纹尖端后面的部分晶须仍 保持完整,则这些晶须把裂纹桥连起来,搭桥会在裂纹表面产生一个压应力,以抵消外加应力的作 用,从而使裂纹难以进一步扩展,起到增韧作用。另一部分是 ZrO₂ 晶粒桥接:裂纹绕过晶粒后在路 径上形成桥接,桥接的增强相使基体产生裂纹闭合,并且桥接有效降低了裂纹尖端的应力。所以, 裂纹的偏转、桥接以及晶须的拔出断裂都有利于韧性的提高。

图 7 (a) WZS0 及 (b~d) WZS2 样品中的裂纹扩展形貌 Figure 7 Crack paths in (a) WZS0 and (b~d) WZS2 samples

3结论

(1) 添加适量的 SiC_w与 ZrO₂可以提高 WC 的综合力学性能,其中 WC-14%ZrO₂-2%SiCw 致密 度可以达到 99.4%,其断裂韧性和硬度分别为 9.12 MPa·m^{1/2} 和 18.5 GPa。

(2) SiC_w的添加量达到 4%时, ZrO₂ 失稳发生 $t \rightarrow m$ 相变,导致材料性能恶化。添加晶须会粗化 晶粒,其中 WC-14%ZrO₂-2%SiC_w的平均晶粒尺寸最大,达到 550 nm。晶须含量继续增高,晶粒尺 寸略微下降。

(3) 随着晶须含量增大,硬度值先显著降低后略微回升,WC-14%ZrO₂-4%SiC_w的硬度值最低,为 17.76 GPa。断裂韧性随晶须含量增大呈现先升高后降低的趋势,WC-14%ZrO₂-2%SiC_w的韧性值最高,为 9.12 MPa·m^{1/2},比 WC-14%ZrO₂提高了 12.3%。

(4) 晶须的添加会导致裂纹发生显著偏转,穿晶断裂增多,并伴有桥接等现象,提高了裂纹扩展 所需要的能量,阻碍裂纹扩展,有利于韧性的提高。

参考文献

 SPRIGGS, GE. A history of fine grained hardmetal [J]. International Journal of Refractory Metals & Hard Materials, 1995, 13: 241–255.

- [2] ZHAO SX, SONG XY, ZHANG JX, et al. Effects of scale combination and contact condition of raw powders on SPS sintered near-nanocrystalline WC-Co alloy [J]. Materials Science & Engineering A, 2008, 473 (1): 323–329.
- [3] 林小为. 少、无粘结相超细晶 WC 硬质合金的制备与性能研究[D]. 广州: 华南理工大学硕士学位论 文, 2012.
- [4] KIM, HC, OH DY, SHON IJ. Sintering of nanophase WC-15vol.%Co hard metals by rapid sintering process [J]. International Journal of Refractory Metals and Hard Materials, 2004, 22 (4–5): 197–203.
- [5] CHA SI, HONG SH. Microstructures of binderless tungsten carbides sintered by spark plasma sintering process [J]. Materials Science and Engineering: A, 2003, 356 (1–2): 381–389.
- [6] 李缨. 碳化硅晶须及其陶瓷基复合材料[J]. 陶瓷, 2007, (8): 39-42.
- [7] EL=ESKANDARANY MS. Fabrication and characterizations of new nanocomposite WC/Al₂O₃ materials by room temperature ball milling and subsequent consolidation [J]. Journal of Alloys and Compounds, 2005, 391 (1–2): 228–235.
- [8] 张梅琳, 朱世根, 赵明威. 烧结工艺对纳米 WC/MgO 复合材料性能的影响[J]. 热加工工艺, 2010, (10): 106-109.
- [9] ZHANG ML, ZHU SG, MA J, et al. Synthesis of nanosized WC/MgO powders by high energy ball milling and analysis of reaction thermodynamics [J]. Powder Metallurgy, 2010, 53: 168–173.
- [10] ZHU SG, MA J, ZHANG ML, et al. Mechanical alloying for formation of nanocomposite WC/MgO materials [M] // REDDY B. Advanced in Nanocomposites. UK, London: IntechOpen, 2012: 883–908.
- [11] BISWAS K, AMARTYA A, BASU B, et al. Densification and microstructure development in spark plasma sintered WC-6wt%ZrO₂ nanocomposites [J]. Journal of Materials Research, 2007, 22 (6): 1491–1501.
- [12] 郑东海, 李元元, 杨超, 等. 放电等离子烧结无粘结相 WC 硬质材料的研究[R]: 中国材料研究学会: 2010 中国材料研讨会, 长沙, 2010:.
- [13] BASU B, LEE JH, KIM D. Development of WC-ZrO₂ nanocomposites by spark plasma sintering [J]. Journal of the American Ceramic Society, 2004, 87 (2): 317–319.
- [14] 孙海军. SiC 晶须改性 WC 基复合材料制备及摩擦磨损性能研究[D]. 湘潭: 湘潭大学硕士学位论文, 2014.
- [15] 王双喜, 雷廷权, 林广清, 等. 碳化硅晶须对氧化锆陶瓷材料结构的影响[J]. 现代技术陶瓷, 1995, (2): 17-21.
- [16] OLIVIER M, BERT L, PEREZ Y, et al. Processing of ultrafine ZrO₂ toughened WC composites [J]. Journal of the European Ceramic Society, 2009, 29 (16): 3371–3378.
- [17] 尹龙卫, 冯维明, 刘援朝. SiC 晶须对 Al₂O₃/TiN/ZrO₂复合材料组织与性能的影响[J]. 山东科学, 1997, (1): 33-36.
- [18] 程晋荣, 许煜汾. ZTA-SiCw-TiC 复相陶瓷材料强韧化机理研究[J]. 上海大学学报, 1997, 3 (1): 49-54.
- [19] 郑东海. 放电等离子烧结制备陶瓷颗粒/晶须增韧 WC 复合材料的研究[D]. 广州: 华南理工大学博士 学位论文, 2013.
- [20] 余正国, 繆世群. SiC 晶须含量对 ZTA 陶瓷基复合材料力学性能和抗热震性能的影响[J]. 机械工程材料, 1996, 20 (3): 8-11.
- [21] 高建祥, 范景莲. 无粘结相 WC 基硬质合金研究进展[J]. 中国钨业, 2011, 26 (6): 22-26.
- [22] HITOSHI T, SUGIYAMA S, KOMATSU M. Effects of Cr₃C₂ and V₈C₇ on the microstructure and mechanical properties of WC-SiC whisker ceramics [J]. Materials Transaction, 2009, 50 (10): 2435–2440.
- [23] WAN Y, GONG JH. Influence of TiC particle size on the load-independent hardness of Al₂O₃-TiC composites [J]. Materials Letters, 2003, 57 (22–23): 3439–3443.
- [24] 李云凯, 钟家湘, 朱鹤孙, 等. 碳化硅氧化锆增韧氧化铝复相陶瓷的研究[J]. 北京理工大学学报, 1996, 16 (5): 561-565.